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Quantitative structure activity relationship studies on a series
of [1,2,4]Triazino[4,3-a] benzimidazole acetic acid derivatives
with selective aldose reductase inhibitor activity is made using a
combination of various physicochemical descriptors. This is a
new class of triazino benzimidazole derivatives having selective
activity with minimum toxic effects. Several significant equations
with good co-efficient of correlation (> 0.854) are obtained; the
best model is selected using predictive ability of equations. The
model shows positive contribution of logP towards biological
activity i.e., high hydrophobic nature of the molecules might be
increasing the selective aldose reductase inhibitor activity.
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Structure-Activity Relationship

The estimated prevalence of diabetes mellitus among
adults worldwide was 4.0% in 1995 and is expected to
double by 2025 (Ref. 1). In spite of insulin treatment
most diabetic patients eventually experience long-
term diabetic complications, such as retinopathy,
neuropathy, cataract and angiopathy. Although there
is still no definite pathogenic link between
hyperglycemia and diabetic complications, several
mechanisms seem to be involved in the toxic effects
caused by excess glucose®?. Among well-examined
factors are the activation of protein kinase C*°,
enhanced protein glycation with the formation of
advanced glycated end products (AGEs)®’, rise of
oxidative stress® °, and activation of the polyol
pathway™.

The polyol pathway was first implicated in the
etiology of secondary complications of diabetes.
Aldose reductase (AR) is the first enzyme of this
pathway and is widely distributed in mammalian
tissues™. In the presence of NADPH, the enzyme
converts glucose to sorbitol, which is only slowly
metabolized to fructose by sorbitol dehydrogenase,
the other enzyme in the pathway, with concurrent

reduction of NAD®. The activation of the polyol
pathway, which occurs during hyperglycemia, brings
about various metabolic imbalances in tissues that
undergo insulin-independent uptake of glucose. In the
ocular lens, hyper osmotic swelling is caused by the
accumulation of sorbitol. In other tissues, the
depletion of the cofactor NADPH used in the pathway
results in the deactivation of glutathione reductase and
nitric oxide synthase, leading to an increased
susceptibility to oxidative stress, vascular derange-
ment and a decrease in nerve conduction velocity. It
has been shown that the oxidation of sorbitol
catalyzed by sorbitol dehydrogenase increases the
ratio of NADH: NAD®, resulting in an increased
lactate: pyruvate ratio and pseudohypoxia®.

There exist a variety of structurally diverse aldose
reductase inhibitors (ARIs). These compounds can be
divided in to two general classes, those containing a
carboxylic acid moiety and those having a cyclic
imide represented by a spirohydantoin or related ring
system™*’.  Recently  however, arylsulphonyl
nitromethane has emerged as a new class. Although
several ARIs have been tested in clinical trials on
diabetic patients for more than 20 years, they still
remain to be proven sufficiently effective'®. Tolrestat,
which was launched in 1989, was withdrawn in 1996,
principally due to its low efficacy. Of the newer
compounds, Zopolrestat and Zenarestat were
withdrawn from clinical trials®™.

Aldose reductase (hALR2), a key component of the
polyol pathway, has been a target for therapeutic
intervention in the development of chronic diabetic
complications.  Although many potent aldose
reductase inhibitors (ARIs) have been identified, the
majority of these also inhibit aldehyde reductase
(hALR1), a related enzyme involved in the
detoxification of relative aldehydes. It is realized
noteworthy to quantify aforementioned structure
activity data and explore the nature of molecular
interactions of these new class of ligands (Table I)
with the aldose reductase enzyme to find out a novel,
highly potent and selective aldose reductase inhibitor.

Results

pICs, = 0.322(+0.199) LogP+0.000(+0.000)TotE1-
0.189(0.341)LUMO+3.927(20.498)
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Table I — Structure and observed biological activity of series of [1,2,4]Triazino[4,3-a]
benzimidazole acetic acid derivatives

] o o CH,COOH
M COCOOH H
N /N—CHZCOOH N, N /N
>¢N >:N—NHCHZCOOH >;N
N \ N
| ) \
R
1-11 12-22 23-24
Compd R ICsp *in uM PICs"
1 CH; 24.8 4.6055
2 CH,CH,CH; 37.2 4.4294
3 CH,CeHs 0.36 6.4437
4 CH,CgH4-4-CH3 13.3 4.8761
5 CH,CgH,4-4-OCHj; 42.6 4.3705
6 CH,CgH,4-4-Cl 4.15 5.3819
7 CH,CgH4-4-F 4.58 5.3391
8 CH,CgH4-4-CF3 23.9 4.6216
9 CH,CgH3-3,4-F, 4.42 5.3545
10 CH,CgH3-2-F-4-Br 4.47 5.3496
11 CH,COOH 135 4.8696
12 CH; 108.6 3.9641
13 CH,CH,CH; 46.5 4.3325
14 CH,CgHs 4.50 5.3467
15 CH,CgH4-4-CHj 45.9 4.3381
16 CH,CgH4-4-OCHj4 445 4.3516
17 CH,CgH4-4-Cl 10.00 5.0000
18 CH,CgH4-4-F 14.80 4.8297
19 CH,CgH4-4-CF3 2.63 5.5800
20 CH,CgH3-3,4-F, 9.72 5.0123
21 CH,CgH3-2-F-4-Br 12.5 4.9030
22 CH,COOH 236 3.6270
23 H 35.9 4.4449
24 CH; 17.00 4.7695
25 CH,CoHs 5.44 5.2644

a: I1Cs (in uM) was the in vitro observed biological activity of compounds

b: Negative logarithmic value of 1Cs,

n=20, r=0.853864, r’=0.729085, variance=0.10837,
std=0.329196, F=14.353 ... (Eqn.1)

Equation 1 fulfills many of the statistical
validations such as the correlation coefficient; the
cross validated squared correlation coefficient, standard
deviation, bootstrapping squared correlation coef-

ficient and chance. But the predictive residual sum of
square standard error of prediction is less than 0.5
(0.35). The correlation accounted for more than
72.9% of the variance in the activity. The data showed
an overall internal statistical significance level better
than 99.9% as F3, 16 « 0.001) = 14.353 which exceeds the



NOTES

tabulated F 16 o 0001y = 9.01, the cross validated
squared correlation coefficient (Q* = 0.639), the
predictive residual sum of square Spress = 0.379), and
the standard error of prediction (Spep = 0.339)
suggested good internal consistency as well as
predictive activity of the biological activity with high
logP.

pICso = 0.278(£0.168) LogP-0.002 (+0.001)
StrBE+4.179 (+0.361)

n=21, r=0.813953, r2=0.662519, variance=0.141838,
std=0.376615, F=17.6682 ... (Egn.2)

pICs;=0.290(20.168) LogP+0.000 (0.000) TotEl
+4.178 (+0.364)

n=21, r=0.810943, r’=0.657628, variance=0.143894,
std=0.379334, F=17.2872 ... (Eqn.3)

pICs, = 0.290 (+0.168) LogP+0.000 (+0.000)
StrE+4.177 (+0.364)

n=21, r=0.810889, r’=0.657541, variance=0.143931,
std=0.379382, F=17.2805 ... (Eqn.4)

pICs, = 0.285(0.167)LogP-0.002(+0.001)StrBE-
0.067(0.106)DipL+4.546(20.715)

n=21, r=0.825683, r’=0.681752, variance=0.140703,
std=0.375104, F=12.1392 ... (Eqn.5)

Equations 2, 3, 4 and 5 were quite significant,
which showed a bootstrapping squared correlation
coefficient values such as 0.709, 0.729, 0.671 and
0.714 respectively. The inter correlation among the
parameters of equation 2, 3, and 5 are 0.141, 0.105
and 0.105 respectively. But the intercorelation among
the parameters of equation 4 are 0.142 for logP with
Str.BE, 0.006 for logP with Dip.L and 0.383 for
Str.BE with Dip.L In equations 2, 3, 4, and 5 one
significant feature is that logP (thermodynamic
descriptor) contribute positively towards biological
activity where as other descriptors like Str.BE
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contribute negatively in equations 2 and 5, DipL also
contribute negatively in equation 5. In equations 3 and
4 the contributions of Tot.E1 and StrE were very poor
towards biological activity.

Discussion

On the basis of wvarious significant statistical
validation data (Table I1) equation 2 was selected as
best model, which may be a true representation in
order to explore the factors responsible for the
selective aldose reductase inhibitor activity of the
series of analogs. This may be helpful in designing
more  potent  substituted  [1,2,4]Triazino[4,3-
a]benzimidazole acetic acid derivatives.

Validation of the model

Equation 2 shows a better correlation coefficient
(r=0.8139), which accounts for more than 66.25% of
the variance in the activity, also the intercorrelation
among the parameters is less (0.141). The equation
shows that in the multi-variant model, the dependent
variable can be predicted from a linear combination of
the independent variables. The P-value is less than
0.001 for each physiochemical parameter involved in
model generation. The data showed an over all
internal statistical significance level better than 99.9%
as it exceeded the tabulated F, 17 o 0.001) = 8.73. The
model was further tested for the outlier by the Z-score
method and no compound was found to be an outlier),
which suggested that the model is able to explain the
structurally diverse analog and is helpful in designing
more potent compounds using physiochemical
parameters. The leave-one-out cross validation
method was employed for the prediction of activity
(Figure 1). The cross-validated squared correlation
coefficient (in the biological activity data of leave-
one-out) (Q? = 0.534), predictive residual sum of
square (Spress = 0.442), and standard error of

Table Il — QSAR statistics of significant equations

2

Model N Train. N Test NV r r
1 20 5 3 0.8538 0.7290
2 21 4 2 0.8139 0.6625
3 21 4 2 0.8109 0.6576
4 21 4 2 0.8108 0.6575
5 21 4 3 0.8256 0.6817

Q? Chance r2-pred. Spress SDEP
0.63 0.01 0.35 0.379 0.33
0.53 0.01 0.50 0.442 0.40
0.37 0.01 0.63 0.513 0.47
0.37 0.01 0.63 0.514 0.47
0.31 0.01 0.54 0.550 0.49

N Train: Number of compounds in training set, N Test: Number of compounds in test set, NV: Number of independent variables, r:
Coefficient of correlation, r?; Coefficient of determination QZ: cross-validated squared correlation coefficient, r? pred.: Predicted
coefficient of correlation, Spress: Predictive residual sum of square, SDEP: Standard error of prediction
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prediction (Spep = 0.409) suggested a good internal
consistency as well as predictive ability of the
biological activity with low Spep. The I’y is at par
with the conventional squared correlation coefficient
(r%). Randomized biological activity results were not
based on the correlation. The robustness and wide
applicability of the model were further explained by
significant rzp,ed value (0.50) (Figure 2 and Table I1).
In general, the model fulfils the statistical validation
criteria to a significant extent to be a useful theoretical
base for proposing more active compound. In
equation 2 logP contributed positively where as
Str.BE contributed negatively towards biological
activity. LogP is representative of atoms of
hydrophobic nature in the molecules and suggests that
substitution of groups, which are high hydrophobic in
nature, might increase the biological activity. Thus,
reimproving the logP characteristics of the molecule
increases the selective aldose reductase inhibitor
activity. Whereas minimizing the property like Str.BE
which is helpful for rationalizing the interaction
between molecule and receptor surface. The study
revealed that distal end substitutions might interact
with a hydrophobic pocket at receptor site, hence
increasing hydrophobicity of the substituent increase
the binding capacity between molecule and receptor
surface which potentiate the selectivity as well as
activity.

Materials and methods
Data set

The aldose reductase inhibitor activity data of
[1,2,4]Triazino[4,3-a]benzimidazole  acetic  acid
derivatives were taken from the reported work of
Settimo et al®®. The biological activity data (ICso in
um) were converted to negative logarithmic dose
(pICsp) for quantitative structure activity analysis.

Geometry optimization

The molecular structures of all 25 compounds were
sketched using the Chemdraw Ultra (Version 8.0)
software and energy minimized via MOPAC with
energy tolerance value of root mean square gradient
0.001 kcal/mol and maximum number of iteration set
to 1000. Conformational search of each energy-
minimized structure was performed using the
stochastic approach which is similar to the RIPS
method. All conformers generated for each structure
were analyzed in conformational geometrics panels
with great care, and the lowest energy conformation
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Figure 1 — Plot between LOO predicted plCsy and observed
pICs, values of compounds of training set for equation 2
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Figure 2 — Plot between predicted plCsy and observed plCsg
values of compounds of training set for equation 2

of each structure was selected and added to a
molecular database to compute various physico-
chemical properties. The descriptor values used in the
model generation are shown in the Table I11.

Statistical methods and molecular descriptors

The series was divided in to a training set of 21
compounds and a test set of four compounds carried
out automatically by the VALSTAT software
(Tables 1V and V). The sequential multiple linear
regression analysis method was employed. In
sequential multiple linear regression, the program
searches for all permutations and combinations
sequentially for the data set. In this case it searched
for 1,25,600 combinations and gave 10 multi-variant
equations based on squared correlation coefficient.
The + data with in the parentheses are the standard
deviations associated with the coefficient of
descriptors in regression equations. The best model
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Compd
1

2

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25

Table 111 — Calculated values of independent variables
LogP Str. E Str.BE Tot. E Dip.L
0.7898 7.62887 -1.7791 38.0291 4.67541
1.6140 8.18515 -1.8978 41.2021 7.38977
2.2748 2592000 -716.6 2594470 3.12539
2.7619 7.92579 -1.7423 35.2303 5.37921
2.1484 388.894 -22.288 768.095 6.71199
2.8330 36748.5 -53.603 37289.7 6.89207
2.4329 860074 -306.17 860817 2.24122
3.1959 23684.1 -37.583 23989.3 6.70292
2.5910 445732 -237.75 448276 11.4074
3.2618 68410.5 -218.79 71352.7 3.50311
-0.1916 17371.8 -15.162 17712.7 2.43480
0.5351 5.80272 -1.8593 68.9341 7.28599
1.3593 5.3207 -1.4613 49.1808 7.19586
2.0201 5.49892 -1.7844 38.2714 5.05971
2.5072 5.24168 -1.354 38.0078 5.01210
1.8937 6.65041 -1.6197 68.0748 6.71447
2.5783 5.59822 -1.6605 43.7304 3.13483
2.1782 5.85121 -1.4541 37.8953 6.15278
2.9412 8.1529 -1.4131 48.0357 5.38989
2.3363 7.45931 -1.8773 47.6272 3.47308
3.0071 7.09369 -2.0858 39.7411 5.11954
-0.4463 5.81768 -1.4822 61.932 5.17877
0.9445 9.39299 -1.3358 34.561 8.62682
1.7328 8.22259 -1.4649 39.9458 6.50269
3.2178 8.15495 -1.3927 37.9949 8.81481

Str.E: Sterching Energy, Str.BE: Stretching bending energy, Tot. E: Total energy,
Dip. L dipole length, LUMO E: Lowest unoccupied molecular orbital energy

LUMO E

-0.6250

-0.5308

-0.4494

-0.6341

-1.1562

-2.0544

-0.5139

-0.7406

-2.0125

-0.8639

-1.1303

-0.4083

-0.4495

-0.4446

-0.3633

-0.6010

-0.5134

-0.4559

-0.7689

-0.7301

-0.7437

-0.7395

-1.2655

-1.0621

-1.1011




962

Table V — Predicted biological activity and LOO predicted
activity with their variance in comparison to the observed
biological activity of equation 2 (Test Set)

Comp. Obs. Pred. Variance LOO  Variance
Activity  Activity pred.
4.3705 4.8261 -0.4556  4.8261 -0.4556
5.3391 5.5447 -0.2056  5.5447 -0.2056
10 5.3496 5.5783 -0.2287 5.5783 -0.2287
17 5.000 4.8991 0.1009 4.8991  0.1009

Obs. Activity: Observed biological activity, Pred. Activity:
Predicted biological activity, LOO pred.: Leave one out predicted
biological activity

Table VI — Inter correlation matrix of the independent
descriptor for equation 2

LogP Str. BE
LogP 1.000000
Str.BE 0.141725 1.000000

was selected from the various statistically significant
equations on the basis of the observed squared
correlation coefficient (r’), variance (v), standard
deviation (std.) the sequential Fischer test (F), the
Bootstrapping r’, chance, Q* value, Spess Value,
standard deviation of error prediction (SDEP) and the
predictive squared correlation coefficient of the test
set (r pred.)?, (Table V1).

Conclusion

High lipophilic nature of the molecule and low
electrostatic potential energy are favourable for the
selective aldose reductase inhibitor activity. Thus,
modification in structure to improve lipophilic
character and electrostatic potential energy might
result in a more potent selective aldose reductase
inhibitor.
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